Microfractal<p><a href="https://mathstodon.xyz/tags/FractalFriday" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>FractalFriday</span></a> (It's already Saturday)</p><p>Elephant valley of the Mobius Mandelbrot set.</p><p>Formula: \(z_{n+1}=f(z_n^2+c,1)\)</p><p>where \(f(z, a)\) is defined as (C-like pseudocode):</p><p>Complex f(Complex z, Real a) {<br> Real dist = abs(re(z)) - a;<br> if (re(z) > a) {<br> re(z) = -a + dist;<br> im(z) = -im(z);<br> } else if (re(z) < -a) {<br> re(z) = a - dist;<br> im(z) = -im(z);<br> }<br> return z;<br>}</p><p>Coloring is done by using three very similar colormaps, mapped to triangle inequality average values.<br>The final color is produced by interpolating between these three colors using the so called "atom domains".</p><p>Generated using my GLSL Shadertoy fractal generator: <a href="https://www.shadertoy.com/view/33sSRf" rel="nofollow noopener" translate="no" target="_blank"><span class="invisible">https://www.</span><span class="">shadertoy.com/view/33sSRf</span><span class="invisible"></span></a></p><p><a href="https://mathstodon.xyz/tags/Mandelbrot" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mandelbrot</span></a> <a href="https://mathstodon.xyz/tags/Fractal" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Fractal</span></a> <a href="https://mathstodon.xyz/tags/Art" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Art</span></a> <a href="https://mathstodon.xyz/tags/Fractalart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Fractalart</span></a> <a href="https://mathstodon.xyz/tags/Mathart" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Mathart</span></a> <a href="https://mathstodon.xyz/tags/GLSL" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>GLSL</span></a> <a href="https://mathstodon.xyz/tags/Shadertoy" class="mention hashtag" rel="nofollow noopener" target="_blank">#<span>Shadertoy</span></a></p>